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a b s t r a c t

In this paper, a spectral-element discontinuous Galerkin (SEDG) lattice Boltzmann
discretization and an exponential time-marching scheme are used to study the flow field
past two circular cylinders in tandem arrangement. The basic idea is to discretize the
streaming step of the lattice Boltzmann equation by using the SEDGmethod to get a system
of ordinary differential equations (ODEs) whose exact solutions are expressed by using a
largematrix exponential. The approximate solution of the resultingODEs are obtained from
a projection method based on a Krylov subspace approximation. This approach allows us
to approximate the matrix exponential of a very large and sparse matrix by using a matrix
of much smaller dimension. The exponential time integration scheme is useful especially
when computations are carried out at high Courant–Friedrichs–Lewy (CFL) numbers,where
most explicit time-marching schemes are inaccurate. Simulations of flow were carried out
for a circular cylinder at Re = 20 and for two circular cylinders in tandem at Re = 40 and
a spacing of 2.5D, where D is the diameter of the cylinders. We compare our results with
those from a fourth-order Runge–Kutta scheme that is restricted by the CFL number. In
addition, important flow parameters such as the drag coefficients of the two cylinders and
the wake length behind the rear cylinder were calculated by using the exponential time
integration scheme. These results are comparedwith results from our simulation using the
RK scheme and with existing benchmark results.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present an exponential time integration scheme for solving the semidiscrete spectral-element
discontinuous Galerkin lattice Boltzmann equation (LBE), resulting from the spatial discretization of partial differential
equations of the hyperbolic type [1], for flow past two circular cylinders in tandem.

The exponential time integrator is a high-order time-marching scheme [2] that gives a good approximation to the
resulting n system of ordinary differential equations (ODEs) yielding a large matrix A ∈ Rn×n with n unknowns. Consider
a one-dimensional ODE of the form df

dt + cf = 0, where f is the unknown and c a constant. The exact solution is given as
f = f (0)e−ct , with an initial condition f (0). For this solution the exponential can be easily computed. For the cases where
the constant is a large matrix, A, however, we need to seek an alternate approach to evaluate the matrix exponential. Our
exponential time integration scheme approximates the exponential of the largermatrix A by using a small matrix,H , known
as the Hessenberg matrix. The matrix H is obtained from the Krylov subspace whose elements are computed by the Arnoldi
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algorithm [3]. The accuracy in approximating the matrix exponential depends on several factors, including the accuracy of
the polynomial approximation of the Arnoldi vectors and the order of the Krylov subspace [4]. One can choose the order of
the Krylov subspace so that it is small enough to compute efficiently and still give an accurate enough solution of the matrix
exponential.

Over the years, several studies have been done on the flow past an isolated circular cylinder and cylinders in either
tandem or staggered arrangements. These studies have been motivated by the practical importance of such cylinders in
engineering applications and on the increasing use of cylindrical geometry in industrial applications. This geometry often
forms the basic structure found in heat exchangers and in the columns of bridges where the cylindrical configurations are
exposed to fluid inmotion. Knowing themotion of the fluid in the vicinity of the cylinders is of practical importance because
the safety and longevity of these structures are important. Also, knowledge of the flow in relation to the arrangement of the
cylinders is important especially in understanding the vibration of bridge columns. This includes how each cylinder affects
its neighbor and the overall flow within the region under consideration.

The incompressible flow over an isolated cylinder has been studied by many researchers [1,5–8]. The results already
published provide a good benchmark case to validate new numerical schemes. Extension to two cylinders with different
spacing between them becomes more challenging, especially when the Reynolds number Re is high and vortex shedding is
observed. The wake between the cylinders in tandem arrangement behaves differently depending on the spacing between
the centers of the cylinder. Moreover, the wake behind cylinders in tandem arrangement is different from the wake behind
an isolated cylinder because of the flow features caused by the presence of the second cylinder [9]. Also, beyond a critical
spacing between the cylinders, it has been observed that two vortex streets are generated, one for each cylinder, behind the
rear cylinder. For spacings less than the critical spacing, the vortex street from the first cylinder reattaches to the surface of
the second cylinder so that only one vortex street is seen beyond the rear cylinder [10–12].

Singha and Sinhamahapatra [12] used the Navier–Stokes (NS) equations with a second-order, implicit finite-volume
method to study the low Reynolds number incompressible flow about two cylinders in tandem. In their work, the spacing
between the centers of the cylinderswas varied and analyzed individually for different Reynolds number. Sharman et al. [10]
studied the flow over two tandem cylinders at Re = 100 using an unstructured NS solver. Their results showed that even
for this value of Re, the flow is still laminar. Also, their results showed that the critical spacing (spacing beyond which two
vortex streets are seen behind the rear cylinder) between the centers of the cylinders for this Reynolds number is between
3.75D and 4.00D, where D is the diameter of the cylinders. Mussa et al. [11] performed studies similar to those in [10] by
using a multiple relaxation time (MRT) LBM and showed that the critical spacing between the centers of the cylinders for
Re = 100 is between 3.25D and 3.50D; they pointed out that the discrepancy is due to the multiplicity of stable solutions
in the region between the cylinders.

For this study, simulations were carried out in a rectangular domain with Reynolds numbers at 20 and 40 for an isolated
cylinder and cylinders in tandem arrangement, respectively. For a constant Courant–Friedrichs–Lewy (CFL) number, we
investigated the effect of varying the order of quadrilateral element, N , and the order of the Krylov subspace, m. Quantities
measured were the drag coefficient on the front and rear cylinders, and the wake length generated behind the rear
cylinder. Computations that involve higher N and m usually take longer to complete because of the increased number of
the Gauss–Lobatto–Legendre points [13] on each quadrilateral element and the increased order of Krylov subspace. We
carried out simulations of low Reynolds number flow over a circular cylinder to validate our code. Quantitative results from
numerical experiments were compared with results from the literature to ensure that our method is valid.

This paper is organized as follows. In Section 2, we discuss a spectral-element discontinuous Galerkin lattice Boltzmann
discretization. In Section 3, we discuss the exponential time integration method for solving the semidiscrete spectral-
element discontinuous Galerkin lattice Boltzmann equation. In Section 4, we present the computational results. In Section 5,
we summarize our conclusions.

2. SEDG-LBM

The spectral-element discontinuous Galerkin lattice Boltzmann method (SEDG-LBM) [1] is local in space and can be
applied to complex geometries due to the grid structure. The solutions are discontinuous on the nodes along the faces of the
elements that are shared. Also, the mass matrix is fully diagonal and can be easily inverted.

2.1. Lattice Boltzmann equation

We consider the discrete Boltzmann equation with the Bhatnagar–Gross–Krook collision operator [14],

∂ fα
∂t

+ eα · ∇fα = −
fα − f eqα
λ

onΩ for α = 0, 1, . . . ,Nα, (1)

where fα is the particle distribution function defined in the direction of the microscopic particle velocity eα, λ is the
relaxation time, and Nα is the number of microscopic velocity, which depends on the lattice Boltzmann model used
[15,16]. In this work, we have used a two dimensional 9-velocity model on a square lattice.
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The discrete velocity eα is expressed as eα = (0, 0) for α = 0, eα = (cos θα, sin θα) for α = 1, 2, 3, 4, and eα =
√
2(cos θα, sin θα) for α = 5, 6, 7, 8, where θα = (α − 1)π/4. The local equilibrium distribution function is given by

f eqα = wαρ


1 +

eα · u
c2s

+
(eα · u)2

2c4s
−
(u · u)
2c2s


, (2)

wherewα is the weight, ρ the density, u the macroscopic velocity, and cs the speed of sound [17] given as cs = 1/
√
3.

The LBE along the characteristics for time step δt is derived from the DBE in Eq. (1) as

fα(x, t)− fα(x − eαδt, t − δt) = −

 t

t−δt

fα − f eqα
λ

dt ′. (3)

Approximating the right-hand side of Eq. (3) with a second-order trapezoidal rule gives

fα(x, t)− fα(x − eαδt, t − δt) = −
δt
2


fα − f eqα
λ


(x−eαδt,t−δt)

+
fα − f eqα
λ


(x,t)


, (4)

and introducing a modified particle distribution function, f̄α , and its corresponding equilibrium distribution function,
f̄ eqα [18], we have

f̄α = fα +
fα − f eqα

2τ
and f̄ eqα = f eqα (5)

where τ is the non-dimensional relaxation time given as λ/δt . The density and momentum can be computed by taking the
zeroth and first moments, respectively:

ρ =

Nα
α=0

fα =

Nα
α=0

f̄α, and ρu =

Nα
α=0

eα fα =

Nα
α=0

eα f̄α. (6)

Thus, in terms of the modified particle distribution function, Eq. (3) can be written as

f̄α(x, t)− f̄α(x − eαδt, t − δt) = −
1

τ + 0.5


f̄α − f̄ eqα


(x−eαδt,t−δt)

. (7)

Eq. (7) is solved by first solving the collision step followed by the streaming step.
• Collision:

f̄α(x − eαδt, t − δt) := f̄α(x − eαδt, t − δt)−
1

τ + 0.5


f̄α − f̄ eqα


(x−eαδt,t−δt)

. (8)

• Streaming:

f̄α(x, t) = f̄α(x − eαδt, t − δt). (9)

In the classical Lattice Boltzmann finite difference approachwhere a structured grid is used, the grid points coincidewith
the lattice points so that the streaming step, as seen in Eq. (9), is a perfect shift. For this case, the CFL number based on eα
is unity. Whereas, on unstructured grids, the streaming step is either interpolated or solved by expressing it as a solution of
the advection equation:

∂ f̄α
∂t

+ eα · ∇ f̄α = 0. (10)

The accuracy of the method used to solve Eq. (10) depends on the order of accuracy of the scheme used. In the following
subsection, we discuss how the SEDG approach is used to discretize the advection equation.

2.2. SEDG weak formulation

To solve the advection equation in Eq. (10), we consider our computational domain Λ, consisting of nonoverlapping
elementsΛe, such thatΛ = ∪

E
e=1Λ

e, and we define a flux Fα(f̄ ) = eα f̄α for the velocity vector eα = (eαx, eαy). Thus onΛ,
Eq. (10) can be written as in [1]

∂ f̄α
∂t

+ ∇ · Fα(f̄ ) = 0. (11)

With a local test function φ multiplied on the advection equation, we have
∂ f̄α
∂t

+ ∇ · Fα(f̄ ), φ

Λe

= 0. (12)
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Fig. 1. F∗ as a function of f̄ and f̄ + .

Integrating Eq. (12) by parts, we get
Λe
φ
∂ f̄α
∂t

dΛ−


Λe

Fα(f̄ ) · ∇φdΛ = −


∂Λe

φn · Fα(f̄ )dΛ̄, (13)

where Λ̄ represents the surface boundary of the elementΛe andn = (nx, ny) is the unit normal vector pointing outward.We
introduce a numerical flux F∗, which is a function of the local solution f̄ and the neighboring solution f̄ + at the interfaces
between neighboring elements as shown in Fig. 1. The numerical flux combines the two solutions that are allowed to be
different at the neighboring element interfaces. The analytic flux Fα(f̄ ), on the surface boundary, is replaced by the numerical
flux F∗

α(f̄ ) so that Eq. (13) becomes
Λe
φ
∂ f̄α
∂t

dΛ−


Λe

Fα(f̄ ) · ∇φdΛ = −


∂Λe

φn · F∗

α(f̄ )dΛ̄. (14)

Integrating Eq. (14) by parts, we obtain the final form of the weak formulation as follows:
∂ f̄α
∂t

+ ∇ · Fα(f̄ ), φ

Λe

=

n ·


Fα(f̄ )− F∗

α(f̄ )

, φ


∂Λe . (15)

In our simulation, we use the Lax–Friedrichs flux [1,19–21] for the numerical flux F∗
α(f̄ ) = F∗

α(f̄ , f̄
+) [1].

2.3. SEDG discretization

We consider the ordered set of N + 1 Gauss–Lobatto–Legendre (GLL) quadrature nodes {ξ0, ξ1, . . . , ξN} that are the
solutions of the equation

(1 − ξ 2)L′

N(ξ) = 0, ξ ∈ [−1, 1], (16)

where L′

N(ξ) is the derivative of the Nth-order Legendre polynomial LN(ξ). The one-dimensional Lagrange interpolation
basis with the GLL grids [13,22] is given by

li(ξ) =
−1

N(N + 1)
(1 − ξ 2)LN ′(ξ)

(ξ − ξi)LN(ξi)
, 0 ≤ i ≤ N, ξ ∈ [−1, 1]. (17)

Now we consider our computational domain Λ in two-dimensional space. Each (x, y) ∈ Λe is mapped on the reference
domain, (ξ , η) ∈ I = [−1, 1]2, through the Gordon–Hall mapping [13]. The tensor-product structure of the reference
element I allows us to define a two-dimensional basis as ψij(ξ , η) = li(ξ(x))lj(η( y)), or simply ψij.

We seek a local approximate solution inΛe defined by the finite expansion of the tensor product basis ψij(ξ , η) as

f̄ Nα := f̄ Nα (x, y, t) =

N
i,j=0

(f̄ Nα )ijψij(ξ , η), (18)

where (f̄ Nα )ij = f̄ Nα (xi, yj, t), that is, the nodal values of the approximate solution f̄ Nα at time t on the tensor product of the
one-dimensional GLL quadrature nodes, (ξi, ηj) [13].

Substituting f̄ Nα into Eq. (15) and using a test function chosen from the tensor product basis, namely, φ := ψî̂j, we have
our discretized weak form as follows:

d(f̄ Nα )ij
dt

(ψij, ψî̂j)Λe + eαx(f̄ Nα )ij


∂ψij

∂x
, ψî̂j


Λe

(19)

+ eαy(f̄ Nα )ij


∂ψij

∂y
, ψî̂j


Λe

=


n ·


F(f̄ Nα )ij − F∗(f̄ Nα )ij


, ψî̂j


∂Λe

. (20)
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Applying the Gauss quadrature rule to Eq. (19), we obtain the mass and stiffness matrices in two dimensions. For the mass
matrix, we have

M = (ψij, ψî̂j)Λe =

N
k=0

N
m=0

Jkmwkwmlî(ξk)li(ξk)lĵ(ηm)lj(ηm)

= J(M̂ ⊗ M̂), (21)

where J = [Jkm] represents the Jacobian at each node in a local element. Note that we have

M̂ij =

N
k=0

wkli(ξk)lî(ξk) = diag(wi), (22)

where li(ξk) = 0 for i ≠ k and li(ξk) = 1 for i = k. The one-dimensional mass matrix M̂ is diagonal, and its tensor product
form is also a complete diagonal matrix in two dimensions. The stiffness matrices are defined as

Dx =


∂ψij

∂x
, ψî̂j


and Dy =


∂ψij

∂y
, ψî̂j


. (23)

The surface integration in Eq. (20) is the one-dimensional integration on each face of the local element:

R(f̄ Nα ) =

4
s=1

N
k=0

Rs
k{(n · eα)[(f̄ Nα )ij − (f̄ Nα )

+

ij ]}wkJ sk, (24)

where Rs
k{·} extracts the information of {·} at the nodes situated on each face of the local element for the face number s.

Here, n is the unit normal vector, and J sk is the surface Jacobian at the nodes on each face.
The semidiscrete scheme for Eq. (15) in a local domainΛe can be written in matrix form as

dfα
dt

+ M−1Dfα = M−1Rfα, (25)

where fα = [f̄ Nα ]ij is a solution vector, D = eαxDx + eαyDy, and R is the surface integration acting on the boundary nodes on
each face of the local element. A detailed description on the SEDG-LBM with the fourth-order Runge–Kutta timestepping
scheme and the computational cost and efficiency of the method can be found in [1,23].

3. Exponential time integrator

Eq. (25) is a system of n ordinary differential equations with n being the number of unknowns. The equation can be
written as

dfα(t)
dt

= −Âfα(t), (26)

where Â = (M−1D − M−1R), fα(t) = (fα1, fα2, . . . , fαn)T is a vector and A is a time-independent matrix of n × n. The exact
solution of Eq. (26) can be obtained as

fα(t) = e−Ât fα(0). (27)

Then, the solution for the time range [n̄δt, (n̄ + 1)δt] is given in the form

fα ((n̄ + 1)δt) = e−δtÂfα (n̄δt) . (28)

Denoting fα(n̄δt) as f n̄α and fα(0) as f 0α , the explicit one-step method in Eq. (28) can be expressed as the computation of
matrix functions of the type

f n̄α = e−δtÂf 0α . (29)

The Krylov subspace projection technique is aimed at appropriately projecting the exponential matrix e−δtÂ, which is
typically very large, onto a small Krylov subspace and accurately carrying out the resulting small exponential matrix
computation. In approximating e−δtÂ, a polynomial of order m − 1 is used so that the matrix exponential can be expressed
in terms of that polynomial. The Taylor series expansion of the exponential term in (29) is

e−δtÂf 0α = f 0α + (−δtÂ)f 0α +
(−δtÂ)2

2!
f 0α +

(−δtÂ)3

3!
f 0α + · · · . (30)



6 K.C. Uga et al. / Computers and Mathematics with Applications ( ) –

The series can be truncated at orderm − 1 with a given integerm, yielding a polynomial approximation of degreem − 1,

a0f 0α + a1(−δtÂ)f 0α + a2(−δtÂ)2f 0α + · · · + am−1(−δtÂ)m−1f 0α , (31)

with coefficients ai, where i = 0, 1, 2, . . . ,m − 1. These approximations are elements of the Krylov subspace of dimension
m, that is,

Km(A, f 0α ) = span{f 0α , Af
0
α , A

2f 0α , . . . , A
m−1f 0α }, (32)

where A = −δtÂ. The Krylov subspace includes all the polynomial approximations of degree at mostm − 1.
To represent an element of Km(A, f 0α ) that approximates f n̄α , one can construct orthonormal sets of vectors Vm =

{v1, . . . , vm} that are basis of the subspace Km(A, f 0α ). We take the well-known Arnoldi algorithm [3] to generate the
orthonormal basis Vm:

1. Compute v1 = f 0α /∥f
0
α ∥.

2. for j = 1, . . . ,m
(a) w = Avj.
(b) Do i = 1, . . . , j

(i) hi,j = (w, vi)

(ii) w = w − hi,jvi.
(c) Compute hj+1,j = ∥w∥2 and vj+1 = w/hj+1,j if hj+1,j ≠ 0,

which can be summarized as

hj+1,jvj+1 +

j
i=1

hi,jvi = Avj, for each j = 1, 2, . . . ,m. (33)

Relation (33) can be written in a matrix form as

Vm+1H̄ = AVm, (34)

where H̄ = [hi,j] ∈ R(m+1)×m. Defining a Hessenberg matrix Hm = [hi,j] ∈ Rm×m, we have the left-hand side of Eq. (34) as
Vm+1H̄ = VmHm + hm+1,mvm+1eTm, where em is the mth unit vector in Rm. Thus we have

VmHm + hm+1,mvm+1eTm = AVm. (35)

When multiplying (35) by V T
m, we use the fact that Vm is an orthogonal matrix, namely, V T

m = V−1
m , and the Arnoldi vectors

vj are orthonormal so that the second term in the left-hand side of Eq. (35) becomes a null matrix. Thus we obtain

Hm = V T
mAVm. (36)

The Hessenberg matrix, Hm, is the projection of the linear transformation of matrix A onto the Krylov subspace Km using the
orthogonal basis vector Vm. In particular, the best approximation of the exponential in (30) is

eAf 0α ≈ VmV T
me

Af 0α = VmV T
me

Av1∥f 0α ∥ = ∥f 0α ∥VmV T
me

AVme1 (37)

= ∥f 0α ∥VmeHme1, (38)

where v1 = f 0α /∥f
0
α ∥ and V T

mv1 = e1.
Friesner et al. [24], and Gallopoulos and Saad [25] have shown that we can obtain an accurate approximation of eA with

small values ofm. Also, Saad [3] andHochbruck and Lubich [26] have conducted adetailed analysis of the error estimate in the
Krylov subspace approximation. Novati [27] discussed convergence analysis and efficient timestep-size control technique
for time-dependent ODEs, showing that convergence is generally O(δtm−1) in time.

4. Computational results

In this section, we present convergence analysis of unsteady Couette flow and the computational results for flow over a
circular cylinder and flow over two cylinders in tandem.

4.1. Unsteady Couette flow

The test case for the convergence analysis of unsteady Couette flow shows the spatial convergence of the RK and the
EXP schemes for a given time step δt . The computation domain has 6 elements in the vertical direction and a domain size
of [0, L]2. The bottom plate is kept stationary while the top plate moves in the x-direction with a velocity U . The periodic
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Fig. 2. SEDG-LBM error analysis of unsteady Couette flow at δt = 0.00025.

boundary condition is applied in the x-direction. The Reynolds number is 2000, Mach Number is 0.05, and the interpolating
polynomials considered are N = 4, 6, 8 and 10. The exact solution from incompressible Navier–Stokes equations is

u(y, t) = U
y
L

+

∞
m=1

2U(−1)m

λmL
e−νλ2mt sin(λmy), (39)

for λm =
mπ
L , m = 1, 2, 3, . . . , and L = 1. Fig. 2 shows the convergence analysis for δt = 0.00025 as N is increased. This

study was carried out for different orders of Krylov subspace,m, at time t = 40. This result shows exponential convergence
of both schemes for the weakly imposed bounce back boundary condition [1].

4.2. Flow over a circular cylinder at Re = 20

The flow over a circular cylinder is used as a benchmark case to validate the exponential time integration scheme, simply
EXP hereafter. The results from this numerical experiment are compared with results from the literature. Several studies
of the flow over a circular cylinder have shown that the total drag on the cylinder decreases with increasing Reynolds
number [5,28]. Fornberg [28] showed that the drag coefficient on a circular cylinder is about 2.0 for Re = 20. He also pointed
out that the steady solution for circular cylinder becomes experimentally unsteady for a Reynolds number of about 40. Park
et al. [5] showed that with increasing Re, the symmetry in the upstream and downstream disappears and two attached
eddies appear behind the cylinder.

We used the EXP scheme to investigate the flow over a circular cylinder at Re = 20, Mach number (Ma) at 0.1, and
diameter D of the cylinder equal to 1.0. A uniform velocity is imposed at the far-field boundaries. The no-slip boundary
condition is imposed on the surface of the cylinder through the flux term as described in [1]. The initial condition is the
potential flow solution of the flow over a circular cylinder [29].

Our computational domain has a height of 60D and a width of 70D. The center of the cylinder is placed at a distance
of 20D from the inlet boundary as seen in Fig. 3, which shows the mesh on the computational domain that is used for the
circular cylinder simulation. The total number of quadrilateral elements in the computational domain is E = 1118, with 24
elements on the surface of the cylinder; 16 of the 24 elements are on the rear side of the cylinder. Thus, for a fifth-order
spectral element (N = 5), we have 144 grid points on the surface of the cylinder. For a given CFL number, the simulation
was run until a steady-state solution was reached.

Table 1 shows the drag coefficients CD and wake length, L, nondimensionalized to the cylinder radius, r0, of the flow
using the five-stage fourth-order Runge–Kutta (RK) scheme [30] and the EXP scheme for different CFL numbers. Table 1
shows that, for a CFL number of 0.25, the drag coefficient and the wake length behind the cylinder are in good agreement for
both the RK and EXP schemes. Also, as the CFL number increases, the RK scheme becomes unstable whereas the EXP scheme
remains stable.

One of the issues with explicit time-marching schemes such as the RK scheme is the limitations imposed by the CFL
number. As the CFL number increases, the scheme becomes unstable. On the other hand, the EXP scheme can handle higher
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Fig. 3. Mesh and computational domain for a circular cylinder simulation.

Table 1
Drag coefficient and wake length for flow past a single cylinder using RK and
EXP schemes with different CFL numbers.

CFL Schemes CD L/ro

0.25 RK (N = 7) 2.102 1.858
0.25 EXP (m = 9,N = 7) 2.102 1.858
0.50 EXP (m = 9,N = 7) 2.101 1.861
1.00 EXP (m = 9,N = 7) 2.099 1.864

Table 2
Comparison of drag coefficient and wake length for Re = 20.

Methods CD L/ro

Lee and Lin (structured mesh) [7] 2.030 1.846
Fornberg [28] 2.000 1.82
Park et al. [5] 2.010 2.000
He and Doolen [6] 2.152 1.842
Niu et al. [8] 2.111 1.92
Dennis and Chang [31] 2.045 1.88
SEDG-LBM (RK, N = 7, CFL = 0.25,Ma = 0.1) 2.102 1.858
SEDG-LBM (EXP, m = 9,N = 7, CFL = 0.25,Ma = 0.1) 2.102 1.858
SEDG-LBM (EXP, m = 9,N = 7, CFL = 0.50,Ma = 0.1) 2.101 1.861
SEDG-LBM (EXP, m = 9,N = 7, CFL = 1.00,Ma = 0.1) 2.099 1.864

CFL numbers as the Krylov subspace dimension increases. The result for CFL equal to 1.0 is shown in Table 1. The table shows
that as the CFL number is increased, there is a slight increase in the wake length. Fig. 4 shows the streamline in the wake
region behind the cylinder at Re = 20,Ma = 0.1, and CFL = 0.25. The results in Table 2 show that the drag coefficient and
wake length from our simulation are in agreement with the results from the literature.

4.3. Flow over two cylinders in tandem at Re = 40

We consider steady flow past two cylinders in tandem for Re = 40. The diameters, D, of the cylinders are 1.0, and the
spacing between the centers of the two cylinders is 2.5D. A rectangular computational domain is used in this simulation as
seen in Fig. 5. The drag force on the cylinders depends on the Reynolds number and the spacing between the cylinders. At the
critical spacing between the cylinders, there is an abrupt increase in the drag coefficient of the upstream and downstream
cylinders [10,11]. Also, there is a symmetric vortex exiting behind the rear cylinder, when the spacing between the two
cylinder centers is 2.5D.

The height,H , andwidth,W , of the computational domain are 60D and 20D+s+50D, respectively, where s is the spacing
between the centers of the cylinders. The total number of elements used in the computational domain is E = 1170. Thus,
for a fifth-order quadrilateral spectral element, the total number of GLL grid points is n = 42,120. A uniform velocity is
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Fig. 4. Streamlines behind a circular cylinder using the EXP scheme,m = 9,N = 7.

Fig. 5. Computational domain for flow past two circular cylinders in tandem.

imposed at the far-field boundaries, and a no-slip boundary condition based on the bounce-back scheme is imposed on the
surface of the cylinders through the flux term [1].

Themeshwithin the computation domain and a close-up view are shown in Figs. 5 and 6, respectively. Themesh grading
is done in such a way that more meshes are put in the region where we have the two cylinders. Farther away from the
cylinders we have larger meshes. The aspect ratio of the mesh close to the cylinders is about 5.0. The mesh size increases
gradually as we move away from the cylinders, as seen in Fig. 6.

We analyzed the drag coefficient and wake length for the flow past two tandem cylinders using the fourth-order RK
scheme and compared these results with the results obtained from the EXP scheme for different element order and Krylov
subspace. Table 3 shows the steady-state drag coefficients on the front and rear cylinders for fifth-, seventh-, and ninth-order
quadrilateral elements. The table also shows thewake length behind the rear cylinder. The Reynolds number is 40, theMach
number is 0.1, and the CFL number is 0.25. Table 3 shows that the drag coefficient on the front cylinder approaches 1.5 as
the order of the quadrilateral element increases. This value is the known drag coefficient for an isolated cylinder with the
same Re. The results also show that the drag coefficient of the rear cylinder approaches 0.062 and the wake length behind
the rear cylinder is about 0.93.

Fig. 7 shows the streamlines around the cylinders for a seventh-order quadrilateral element. The wake length is an
estimate of the distance between the farthest point on the rear cylinder and the stagnation point behind the rear cylinder.
Thewake length behind the rear cylinderwill change if the spacing between the center of the cylinders is changed. Thewake
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Fig. 6. Close-up view of mesh around two circular cylinders in tandem.

Table 3
Drag coefficient for flowpast tandem cylinders using a 5-stage fourth-
order RK scheme.

N CD (front) CD (rear) L/ro

5 1.479 0.613 × 10−01 1.860
7 1.483 0.617 × 10−01 1.861
9 1.487 0.622 × 10−01 1.862

Fig. 7. Streamlines around tandem cylinders for a seventh-order element using the RK scheme.

region behind the front cylinder is not closed because of the presence of the rear cylinder at a location before the zero shear
point of an isolated cylinder under the same Re. The figure shows that there are two counter-rotating vortices formed behind
the front cylinder above and below the centerline. Behind the rear cylinder, the vortices formed are symmetric, closed, and
counter-rotating. They are closed because of the adequate spacing behind the rear cylinder, which allows for a zero shear
point to exist. The pressure distribution around the cylinders for a seventh-order element is shown in Fig. 8. The results
show that the low drag coefficient on the rear cylinder is caused by the low-pressure region between the two cylinders and
the downstream region. The vortices between the rear of the first cylinder and the front of the rear cylinder create a pulling
effect on the faces of the cylinder in this region as they rotate in opposite direction. The front cylinder experiences a positive
pressure on the front side and a negative pressure on the rear side. Thus it experiences a large drag force because of the
low-pressure region on the rear side.
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Fig. 8. Pressure contour around tandem cylinders for a seventh-order element using the RK scheme.

Table 4
Drag coefficients for flow over tandem cylinders using the EXP
scheme, CFL = 0.25.

m N CD (front) CD (rear) L/ro

5 1.479 0.613 × 10−01 1.858
5 7 1.483 0.617 × 10−01 1.860

9 1.487 0.622 × 10−01 1.862

7 5 1.479 0.613 × 10−01 1.860
7 1.483 0.617 × 10−01 1.858

9 5 1.479 0.613 × 10−01 1.860
7 1.483 0.617 × 10−01 1.862

Table 5
Drag coefficients for flow over tandem cylinders using the EXP
scheme, CFL = 2.

m N CD (front) CD (rear) L/ro

7 7 1.474 0.537 × 10−01 2.131
7 9 1.483 0.591 × 10−01 1.977

9 7 1.475 0.613 × 10−01 1.868
9 9 1.482 0.619 × 10−01 1.865

11 7 1.476 0.614 × 10−01 1.862
11 9 1.482 0.620 × 10−01 1.861

For the same Re,Ma, CFL numbers, and element order, the simulations were carried out by using the EXP scheme with
m = 5, 7, and 9. Table 4 shows the results from the simulations with the EXP scheme. It shows that for a given order of
the Krylov subspace m, as the order of the quadrilateral element N increases, the drag coefficient for the front cylinder
approaches 1.5, and the drag coefficient of the rear cylinder approaches 0.062. This is the same behavior that was seen with
the RK scheme. For this CFL number, we note that even for a smallm, we can get an accurate estimate of the drag coefficients.
The streamlines around the cylinders for m = 5 and N = 5 are shown in Fig. 9. The pressure contour around the cylinders
form = 5 and N = 5 is shown in Fig. 10.

Simulations for CFL = 2 were carried out for the same Re and Ma; the results are shown in Table 5. A comparison of
the results from the EXP scheme with varying CFL number and m is shown in Table 6. The results from Table 6 show that
even for high CFL numbers, the drag results from the EXP scheme are consistent with the results from the RK scheme as
seen in Table 3. Table 6 also shows that by increasing m and N , we can get a better estimate of the drag coefficients on the
cylinders. This is in agreement with the discussion in the earlier section. Table 7 presents a comparison of flow parameters
between our solution and those of Singha and sinhamahapatra [12] for Re = 40. Our result shows good agreement for the
drag coefficient on the front cylinder.
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Fig. 9. Streamlines around tandem cylinders for a fifth-order element using the EXP scheme.

Fig. 10. Pressure contour around tandem cylinder for a fifth-order element using the EXP scheme.

Table 6
Comparison of drag coefficient andwake length for flow past tandem cylinders using the EXP
scheme.

N CFL m CD (front) CD (rear) L/ro

7 0.25 7 1.483 0.617 × 10−01 1.858
7 0.50 7 1.483 0.617 × 10−01 1.862
7 1.00 7 1.482 0.616 × 10−01 1.861
7 2.00 7 1.474 0.537 × 10−01 2.131

7 0.25 9 1.483 0.617 × 10−01 1.862
7 0.50 9 1.483 0.617 × 10−01 1.856
7 1.00 9 1.482 0.616 × 10−01 1.861
7 2.00 9 1.475 0.613 × 10−01 1.868

5. Conclusions

We have presented an exponential time integrator scheme for spectral-element discontinuous Galerkin lattice
Boltzmann simulations of flow past a circular cylinder and tandem cylinders. The computational results in the case for
flow over a circular cylinder are in agreement with the results from the literature as presented in Section 4.2.
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Table 7
Comparison of drag coefficients and wake length for flow past tandem cylinders, s =

2.5D, CFL = 0.25,N = 7, and m = 9.

RK EXP Singha et al. [12]

CD (front) 1.483 1.483 1.49
CD (rear) 0.617 × 10−01 0.617 × 10−01 0.18
L/ro 1.861 1.862 –

For the flow past two tandem circular cylinders, we have shown that for a CFL number of 0.25 and Reynolds number of 40,
the accuracy of the approximated results increases with increasing quadrilateral element order and the order of the Krylov
subspace. This conclusion can also be drawn from the fact that the matrix exponential is accurate when the order of the
Krylov subspace is equal to the size of the large matrix A. Thus, approximation accuracy increases with increasing order of
Krylov subspace. Also, the tabulated results for tandem cylinders using the exponential scheme show that the approximated
results for drag coefficient and wake length are correct even for large CFL numbers.
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